SOBOLEV SPACES AND SYMBOLIC CALCULUS

BY R. KAUFMAN

ABSTRACT

We use elementary theory of distributions and geometry of Euclidean spaces to obtain a theorem on the symbolic calculus of several variables in spaces of Fourier series with weights.

- 1. Let f be a real function on R^N with continuous partial derivatives up to order p, and S a closed subset of R^N of dimension < N (roughly speaking). Then it is sometimes possible to interpolate f, on S, by a function g in R^N , with more than p derivatives in $L^2(R^N)$, so that \hat{g} exhibits better integrability than \hat{f} . In our main theorem we establish an interpolation of this kind; although it appears artificial, it is well adapted for a certain problem in Banach algebras. Following a suggestion of the referee, we treat this problem in a Corollary.
- 2. Let $\beta > 0$ and let S be a closed subset of R^N . We say that S has property S_{β} if, for each h in (0, 1), S is contained in the union of at most $CH^{-\beta}$ open balls of radius h.

THEOREM. Let f belong to $C^P(\mathbb{R}^N)$, $(p = 0, 1, 2, \cdots)$ and let S have property S_{β} . Let $q \ge p+1$ and $N-\beta > 2(q-p)$. Then there exists a function g on \mathbb{R}^N , such that $g \mid S = f \mid S$, and g has generalized derivatives of order $0, 1, \cdots, q$ in $L^2(\mathbb{R}^N)$.

PROOF. Let f_0 be the restriction of f to S, and let g be the extension of f_0 to R^N , produced by Whitney's Theorem [2, VI]. Then $g \in C^P(R^N)$ and, for every partial derivative D^q of order q > p, $|D^q g| = O(d(x, S))^{p-q}$ near S. Since g is C^∞ off S, we can achieve this with a function of compact support. Then $D^q g$ is defined almost everywhere and for large Y

$$m\{|D^qG| > Y\} \le m\{d(x,S) < CY^{-1/q-p}\} = O(Y^{-\eta}),$$

Received October 4, 1979 and in revised form December 13, 1979

where $\eta = (N - \beta)(q - p)^{-1}$. Now $D^q G \in L^2(\mathbb{R}^N)$ provided $\eta > 2$, but we still have to verify that $D^q g$ is the derivative in the sense of distributions.

Let $\psi_k(x) = k^N \psi(kx)$ be an approximate identity, with $\psi_1 \in C^{\infty}$ and $\psi_1(x) = 0$ for |x| > 1. Writing $g_k = g * \psi_k$ we observe that

$$D^{q}g_{k} = O(d(x, S))^{p-q}$$
, if $d(x, S) \ge 2k^{-1}$,
 $D^{q}g_{k} = O(k^{q-p})$, always.

Hence the first line is true unconditionally, and thus $D^q g$ exists as a distribution in L^2 by dominated convergence. This ends the proof.

In view of the applications, we write the conclusion as an inequality on \hat{g} : $\iint |\hat{g}(u)|^2 (1+|u|)^{2q} du < +\infty.$ By the Schwarz inequality we have

COROLLARY 1.
$$\iiint |\hat{g}(u)| (1+|u|)^{\gamma} du < +\infty \text{ if } 2\gamma < 2q - N.$$

3. Let now $\alpha > 0$ and let A_{α} be the Banach algebra of functions $F(x) = \sum a_n e^{inx}$, with finite norm $||F||_{\alpha} \equiv \sum (1+|n|)^{\alpha} |a_n|$. We remark that if $\alpha \ge 1$, then F is of class $C^1(R)$, while F is Hölder-continuous of order α when $0 < \alpha < 1$. For real functions F in A_{α} ,

$$||e^{iF}||_{\alpha} \leq C(1+||F||_{\alpha})^{\tau};$$

 $\tau > 0$ and C depend only on α . For details on the best value of τ , see [1].

COROLLARY 2. There is an integer $p(\alpha)$ depending only on α , with this property: whenever F_1, \dots, F_N are real and belong to A_{α} , and F belongs to $C^p(\mathbb{R}^N)$, then $f(F_1, \dots, F_N)$ is A_{α} .

We haven't given the details, but the calculations below can be sharpened to yield

$$p(\alpha) \le \alpha^{-1} + O(1)$$
 for $0 < \alpha \le 1$,
 $p(\alpha) \le \alpha/2 + O(1)$ for $\alpha \ge 1$.

A small advantage can be gained by allowing fractional numbers p.

To prove Corollary 2 we let S be the graph $\{(F_1(t), \dots, F_N(t)): 0 \le t \le 2\pi\}$. Then S has property S_{β} , with $\beta = \max(1, \alpha^{-1})$. We apply Corollary 1, and the cited theorem of Leblanc, with $\gamma = \tau(\alpha)$. (We can always assume that $N > \beta$.) This succeeds if there is an integer $q = q(N, \alpha)$ so that

- (i) $N-\beta+2p>2q$,
- (ii) $2q > 2\tau + N$.

Now (i) and (ii) certainly admit a solution q if $N-\beta+2p>2\tau+N+2$, or $2p>2\tau+\beta+2$.

REFERENCES

- 1. N. Leblanc, Les fonctions qui opèrent dans certains algèbres à poids, Math. Scand. 25 (1969), 190-194.
- 2. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN
ILLINOIS 61801 USA